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   Study Design.      In vitro  cadaveric biomechanical study of lateral 
interbody cages and supplemental fi xation in a degenerative 
spondylolisthesis (DS) model. 
   Objective.   To investigate changes in shear and fl exion-extension 
stability of lateral interbody fusion constructs. 
   Summary of Background Data.   Instability associated with DS 
may increase postoperative treatment complications. Several groups 
have investigated DS in cadaveric spines. Extreme lateral interbody 
fusion (XLIF) cages with supplemental fi xation have not previously 
been examined using a DS model. 
   Methods.   Seven human cadaveric L4–L5 motion segments were 
evaluated using fl exion-extension moments to  ± 7.5 N·m and 
anterior-posterior (A-P) shear loading of 150 N with a static axial 
compressive load of 300 N. Conditions were: (1) intact segment, 
(2) DS simulation with facet resection and lateral discectomy, (3) 
standalone XLIF cage, (4) XLIF cage with (1) lateral plate, (2) lateral 
plate and unilateral pedicle screws contralateral to the plate (PS), 
(3) unilateral PS, (4) bilateral PS, (5) spinous process plate, and (6) 
lateral plate and spinous process plate. Flexion-extension range of 
motion (ROM) data were compared between conditions and with 
results from a previous study without DS simulation. A-P shear 
displacements were compared between conditions. 
   Results.   Flexion-extension ROM after DS destabilization increased 
signifi cantly by 181% of intact ROM. With the XLIF cage alone, 
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     Degenerative spondylolisthesis (DS) is defi ned by disc 
and facet degeneration that allows displacement of 
one vertebral body with respect to another. It is pre-

dominantly found in older females at the L4–L5 level, and 
is often associated with more sagittally oriented facets joints. 
The facet orientation limits resistance to normal shear and 
when combined with hormonal factors, buckling of the liga-
mentum fl avum, disc degeneration, facet joint osteoarthritis, 
ligament laxity, ineffective muscular stabilization, high pelvic 
incidence, and high sacral slope leads to forward vertebral 
subluxation and lateral recess stenosis of the passing nerve 
roots. 1–4  

 Powerful shear forces in spondylolisthesis affect spinal sta-
bility. The shear forces generated in the human lumbar spine 
 in vivo  have been estimated to be in the range of 400 to 800 
N but the musculature plays a large part in resisting shear, 
resulting in the motion segment being subject to shear loads of 
approximately 200 N. 5–8  In physiological motion of the intact 
motion segment, the disc provides the strength and stiffness 
for the joint, whereas the facets guide the motion. The lum-
bar facets play an important role in resisting shear and axial 
rotation and to a lesser extent fl exion-extension and lateral 
bending. 

ROM decreased to 77% of intact. All conditions were less stable 
than corresponding conditions with intact posterior elements except 
those including the spinous process plate. Under shear loading, A-P 
displacement with the XLIF cage alone increased by 2.2 times intact. 
Bilateral PS provided the largest reduction of A-P displacement, 
whereas the spinous process plate alone provided the least. 
   Conclusion.   This is the fi rst  in vitro  shear load testing of XLIF 
cages with supplemental fi xation in a cadaveric DS model. 
The variability in sagittal plane construct stability, including 
signifi cantly increased fl exion-extension ROM found with most 
fi xation conditions including bilateral PS may explain some clinical 
treatment complications in DS with residual instability.    
  Key words:   degenerative spondylolisthesis  ,   XLIF  ,   extreme lateral  , 
  stability  ,   range of motion (ROM)  ,   lumbar interbody fusion  ,   shear 
loading  ,   shear displacement  . 
 Level of Evidence: N/A 
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 Stenosis associated with spondylolisthesis is typically 
treated with laminectomy, which may further increase insta-
bility by removing posterior stabilizing elements such as the 
ligamentum fl avum, inter- and supraspinous ligaments, and 
part or all of the facet joints and facet capsules, leading to 
unsatisfactory results. Additional stabilization of the laminec-
tomy with fusion and supplemental fi xation has become the 
established treatment of choice. Successful outcomes depend 
on fusion healing that requires suffi cient stability to facili-
tate bone growth and prevent fi brous tissue formation. The 
best opportunity for healing may be the anterior interbody 
fusion with better loading of the graft and the largest surface 
area for fusion. The mechanical stiffness environment of the 
implant construct favorably infl uences the healing response of 
the fusion. Continued motion across the operative segment is 
detrimental to obtaining a successful spinal fusion and may 
lead to treatment complications. 

 Because of its ability to provide indirect decompression 
without disrupting the posterior elements, segmental stabil-
ity, and lordosis restoration, the transpsoas lateral interbody 
fusion (extreme lateral interbody fusion [XLIF], lateral lum-
bar interbody fusion [LLIF], direct lateral interbody fusion 
[DLIF]) technique has been proposed as a treatment for 
DS. 9–16  The biomechanics of this type of interbody approach 
with various supplemental fi xation are quite well understood 
in normal cadaveric spines. 17–23  However, most previous 
biomechanical studies have not taken the spondylolisthesis 
pathology into account. There are limited cadaveric biome-
chanical studies investigating DS with shear loading, 24–28  and 
there has also been little emphasis on shear loading with inter-
body implants. 29  Our objective was to evaluate anterior-pos-
terior (A-P) shear displacement and fl exion-extension range 
of motion (ROM) in a spondylolisthesis model with a later-
ally inserted interbody cage with various supplemental fi xa-
tion techniques.   

 MATERIALS AND METHODS  

 Specimen Preparation 
 Seven human cadaveric lumbar L4–L5 motion segments were 
dissected from donor spines (average age, 53.1 yr; range, 
43–66 yr) and cleaned of muscle and adipose tissue, leaving 
the intervertebral discs, ligaments, and facet capsules intact. 
A-P and lateral radiographs confi rmed that specimens were 
free of deformity or degeneration. Bone density was assessed 
by dual-energy x-ray absorptiometry, with average bone min-
eral density of 0.92  ±  0.11 g/cm 2  (range, 0.81–1.14 g/cm 2 ). 
The caudal and cephalad ends of each specimen were mounted 
in polyurethane resin (Smooth-Cast 300; Smooth-On Inc., 
Easton, PA), positioned with the disc space horizontal. 

 Each specimen was initially instrumented with 2 lateral 
plate bolts (XLP; NuVasive Inc., San Diego, CA) and 4 pedicle 
screws (PSs) (SpheRx DBR II; NuVasive Inc.) with the aid of 
fl uoroscopy. Lateral plate bolts were inserted along the coro-
nal plane, and parallel and adjacent to the L4 inferior and L5 
superior endplates. Care was taken to avoid facet impinge-
ment with the PSs. Motion tracking marker arrays, consisting 

of 4 noncollinear infrared LEDs, were attached to the L4 and 
L5 vertebral bodies.   

 Spondylolisthesis Simulation 
 In previous studies, DS has been simulated by resection of 
the facet joints, followed by various soft-tissue dissection 
including annulotomy, nucleotomy, longitudinal ligament, or 
ligamentum fl avum. 24  ,  27  ,  28  In this study, spondylolisthesis was 
simulated at L4–L5 ( Figure 1 ). We fi rst created a lateral discec-
tomy using a knife, pituitary rongeur, and curettes, preserving 
the anterior longitudinal ligament, the posterior longitudinal 
ligament, and the anterior and posterior annulus. Then, using 
a 4-mm burr, similar to the way of Melnyk  et al , 27  the infe-
rior facets were cut parallel to the joint surfaces through the 
anterolateral aspect of the L4 inferior articular process and 
the posteromedial aspect of the L5 superior articular process. 
On the basis of initial pilot testing, this resulted in an average 
A-P displacement corresponding to a Meyerding grade I spon-
dylolisthesis (0%–25% slip;  Figure 2A ).     

 Interbody Cage Insertion 
 The laterally inserted XLIF cage (CoRoent XL; NuVasive 
Inc.) is 18-mm wide in the A-P direction and made from poly-
etheretherketone. Interbody sizing was based on individual 
specimen anatomy to determine height and lateral length, and 
was performed by a surgeon experienced with lateral approach 
surgery taking care not to damage the endplates. Implant height 
was in the range from 8 to 12 mm. The taller implants are likely 
larger than clinical use because specimens were not degener-
ated. Implant length was in the range from 50 to 55 mm.   

 Testing Equipment 
 Each test condition was subjected to pure moment fl exibility 
testing followed by A-P shear loading. All testing was per-
formed on a custom 6- df  spine testing system described in 
the previous text ( Figure 3A ). 30  The system was modifi ed 
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   Figure 1.    Posterior view of a simulated L4–L5 spondylolisthesis model 
specimen with bilateral facet resection using 4-mm burr (indicated by 
arrows), lateral annulotomy, and discectomy. Pedicle screws shown  in 
situ  without connecting rods.  
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to include shear loading that is applied to the specimen by 
attaching cables to the caudal end of the specimen and apply-
ing a prescribed tension to the cables. Cable tension is con-
trolled by a motor connected  via  load cells to the platform 
( Figure 3B ). An infrared marker array was attached to the 
mobile platform.    

 Testing Parameters 
 Flexibility testing consisted of 3 cycles of unconstrained 
fl exion-extension moments to  ± 7.5 N·m, with the fi nal cycle 
used in data analysis. During testing, the lateral bending and 
axial rotation axes were commanded to zero N·m using active 
torque control with feedback from the 6- df  load cell. The axial 
load was maintained at zero N. Testing parameters are consis-
tent with the literature. 31  ,  32  Motion segment kinematics were 
obtained using an optoelectronic motion system (Optotrak 
Certus; Northern Digital Inc., Waterloo, Ontario, Canada). 

 For shear testing, a static cranial-caudal compressive load 
(300 N) was initially applied  via  a pneumatic actuator. A 
posterior shear load was applied to the L5 vertebra using the 
motorized cable system while L4 was fi xed. A shear load of 
150 N, which is in the range of typical shear loads, 6–8  was 
applied. The specimen was unloaded and a smaller shear load 
of 25 N was applied in the reverse direction. Intervertebral A-P 
shear displacement was measured using the Optotrak system.   

 Testing Protocol 
 Each spine was evaluated with fl exibility testing followed by 
shear testing under the following conditions ( Figure 4 ):     

 (1)     Intact.   
 (2)     Simulated spondylolisthesis destabilization.   
 (3)     Standalone laterally inserted XLIF cage.   
 (4)      XLIF cage with various supplemental fi xations such as: 

  (a)     lateral plate supplemental fi xation,  
  (b)      lateral plate  +  unilateral PSs contralateral to the 

lateral plate,  
  (c)     unilateral PSs,  
  (d)     bilateral PSs,  
  (e)     spinous process plate, and  
  (f)     lateral plate  +  spinous process plate.       

 The order of construct assembly was the same for all speci-
mens. Conditions that included the spinous process plate Con-
ditions 4(e) and 4(f) were tested last in all cases because they 
required removal of the inter- and supraspinous ligaments 
that could have affected the kinematics of other conditions.   

 Figure 3.     A , Custom 6- df  spine testing apparatus with servomotors for 
fl exion-extension, lateral bending, and axial rotation. The L4–L5 spine 
segment is in position with infrared LED markers on each vertebral 
body.  B , Cable system for applying shear loading for specimens. Ca-
bles attached to specimen platform indicated by arrows. LED indicates 
light emitting diode.  

Copyright © 2014 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.

   Figure 2.     A , Creation of grade I (13% in this example) spondylolisthe-
sis.  B , Reduction of spondylolisthesis after insertion of the lateral cage. 
Disc space partially obscured by motion tracking markers. Lateral fl uo-
roscopic images taken during initial pilot testing where zero axial load 
was applied during application of the A-P shear load to maximize A-P 
translation. A-P indicates anterior-posterior.  
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  Figure 4.    Representative lateral fl uoroscopy images 
of the fi xation test constructs: lateral plate ( A ), lat-
eral plate  +  unilateral pedicle screws ( B ), unilateral 
pedicle screws ( C ), bilateral pedicle screws ( D ), spi-
nous process plate ( E ), and lateral plate  +  spinous 
process plate ( F ).  

 Data Analysis 
 Flexion-extension L4–L5 ROM was determined for each speci-
men from the third loading cycle. For each experimental con-
dition, ROM was normalized to the intact ROM. A-P shear 
displacement was calculated from the single cycle of A-P shear 
loading between 0 N and 150 N. A-P shear displacement was 
not normalized to intact because values were small relative 
to the accuracy of the optoelectronic motion system (quoted 
as 0.1 mm by the manufacturer) and dividing results by the 
intact condition shear displacements could compound error 
on those results. The means and standard deviations for the 
fl exion-extension ROM and the A-P shear displacement were 
calculated for each test condition. For both fl exion-extension 
ROM and A-P displacement, pair-wise comparisons were 
made between all conditions except the destabilized condition 
(condition, 2) using repeated-measures analysis of variance and 
the Holm-Sidak test, with a level of signifi cance of  P   <  0.05. 
The spondylolisthesis defect condition was excluded from the 
ROM analysis because it was signifi cantly higher than the other 
groups and would have reduced the ability to detect statistical 
differences. Similarly, A-P shear displacement in this condi-
tion was excluded because under axial load, the disc collapses 
and the burred surfaces of the facetectomy impinge, restricting 
motion under shear loading. In subsequent conditions, the lat-
eral inserted cage elevates the disc space and increases forami-
nal height unlocking the facet impingement and reducing the 
spondylolisthesis, but A-P displacement is not restricted. 

 The current spondylolisthesis model fl exion-extension 
normalized ROM data were also compared with previously 
reported lateral cage-specifi c biomechanical testing results in 
the intact specimen obtained at the same testing facility. 18  ,  19  
Statistical comparisons were made within each test conditions 
using 2-tailed  t  tests (non-normalized data were compared for 
the intact condition).    

 RESULTS 
 Intact fl exion-extension ROM was 8.8 °  (standard deviation, 
3.5 ° ) ( Table 1 ). After destabilization from the simulated spon-
dylolisthesis, ROM increased signifi cantly to 181% of intact. 
With the XLIF cage alone, ROM decreased to 77% of intact 

in fl exion-extension ( Figure 5 ). Introducing the lateral cage 
after destabilization was also noted to reduce the spondylolis-
thesis ( Figure 2B ). The most rigid constructs were those incor-
porating spinous process plate fi xation, however there were 
no signifi cant differences between fi xation with bilateral PSs, 
spinous process plates, or a combination of spinous process 
and lateral plates ( P   ≥  0.361;  Table 2 ). All conditions tested 
were less stable than corresponding conditions with intact 
posterior elements ( Figure 5 ). The differences in ROM varied 
by 1.0 to 2.4 times, which were statistically signifi cant in all 
cases except the spinous process plate ( P   =  0.967;  Table 1 ) 
and the spinous process plate plus lateral plate conditions 
( P   =  0.818).    

 Under shear loading, A-P displacement with the XLIF cage 
alone increased by approximately 2.2 times compared with 
the intact spine ( P   =  0.002;  Figure 6 ). Compared with the 
cage alone condition, addition of supplemental fi xation sig-
nifi cantly reduced the amount of shear displacement in all 
cases except the spinous process plate ( P   =  0.932;  Table 2 ), 
which provided the least resistance to shear. Bilateral PSs 
provided the largest reduction of A-P displacement however; 
this was not signifi cantly different from the intact condition 
( P   =  0.553).    

 DISCUSSION 
 There have been several comparable biomechanical models 
described for DS. Crawford  et al  24  created a model for spon-
dylolisthesis by removing the facet joints, complete discec-
tomy and stripping the anterior and posterior longitudinal 
ligaments to loosen them. Both disc and facet destabilization 
procedures were necessary to create model a grade I spon-
dylolisthesis. In their series, ROM and shear testing without 
compressive load showed signifi cant increases as each phase 
of the destabilization process proceeded. Using this model, 
Cagli  et al  29  found that cages were suboptimal standalone, 
and PSs with threaded interbody cages were the most sta-
ble. Melnyk  et al  27 created a model of DS under combined 
loading of shear and axial compression. The same authors 
tested posterior dynamic fi xation only without interbody 
implants. 25  ,  26  
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 TABLE 1.    Flexion-Extension ROM and A-P Shear Displacement Results  

Test Condition

Flexion-Extension ROM

A-P Shear 
Displacement, mm

Spondylolisthesis 
Defect ROM, º

No Defect 
ROM, º

 P  (Defect  vs.  No 
Defect ROM)

Intact 8.8 (3.5) 6.4 (1.7) 0.081 0.33 (0.23)

Destabilized 15.2 (4.4) n/a n/a 0.58 (0.39)

Cage alone 6.6 (2.4) 2.0 (0.9)   < 0.001 0.74 (0.22)

Lateral plate 6.6 (2.1) 2.1 (0.9)   < 0.001 0.42 (0.11)

Lateral plate  +  Unilateral PS 3.4 (1.4) 1.3 (0.7)  0.002 0.24 (0.07)

Unilateral PS 4.8 (1.9) 1.4 (0.7)   < 0.001 0.30 (0.28)

Bilateral PS 2.1 (0.8) 0.8 (0.3)  0.002 0.16 (0.17)

Spinous process plate 1.5 (0.6) 1.1 (0.6) 0.967 0.63 (0.21)

Spinous process  +  lateral plates 1.3 (0.3) 1.0 (0.5) 0.818 0.36 (0.17)

  P  values from mean and standard deviation fl exion-extension ROM values for this study (spondylolisthesis defect) and existing (no defect 18  ,  19 ) data. 
    2-tailed  t  tests between spondylolisthesis defect and no defect fl exion-extension ROM data for each test condition (no comparisons between conditions, data 
normalized to intact prior to comparisons, statistically signifi cant values [ P   <  0.05] shown in bold-type text), and mean and standard deviation. 
 A-P shear displacement values for this study.  
 ROM indicates range of motion; A-P, anterior-posterior; n/a, not applicable. 
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 Figure 5.    Mean fl exion-extension ROM as a percent of intact spine 
comparing current data (spondylolisthesis defect) with existing data 
(no defect 18  ,  19 ). Error bars represent  ± 1 standard deviation. Cage 
 denotes cage alone condition; LPlt, lateral plate; uPS, unilateral pedi-
cle screws; LPlt  +  uPS, lateral plate  +  unilateral pedicle screws; bPS, 
bilateral pedicle screws; SPPlt, spinous process plate; SPPlt  +  LPlt, 
spinous process plate  +  lateral plate. ROM indicates range of motion.  

 We were able to create a spondylolisthesis model with 
reproducible results. Our results show that fl exion-exten-
sion ROM drastically increased with the spondylolisthesis 
defect to 181% of intact. Introduction of the lateral cage 
reduced ROM signifi cantly ( P   <  0.001) to less than intact, 
which was in contrast to the fi nding by Cagli  et al , 29  where 
ROM remained greater than intact after insertion of anterior 
threaded interbody devices. Lack of anterior longitudinal 
ligament retention was one reason cited by the authors. The 
lateral interbody fusion technique retains this ligament that 
is tensioned along with the posterior longitudinal ligament 
and remaining annulus with cage insertion, providing rigidity 
to the segment. Endplate preservation is therefore important 
to achieving initial stability. In this study, all supplemental 

fi xation methods evaluated, except the lateral plate, further 
reduced ROM signifi cantly with respect to the cage alone 
( P   <  0.001). Comparing current ROM results with previous 
data 18,19  with posterior elements intact ( Figure 5 ) revealed sig-
nifi cant increases in fl exion-extension ROM with each type 
of fi xation in the spondylolisthesis model, with the exception 
of the spinous process plate conditions. For other conditions, 
there was 1.9 to 2.4 times more motion than with posterior 
elements intact. Lower ROM in the previous studies indi-
cates that intact facet joints, in combination with the retained 
longitudinal ligaments and annulus, contribute to stability. 
Lateral interbody fusion may allow for preservation of the 
posterior structural elements through ligamentotaxic spondy-
lolisthesis reduction and indirect decompression of the neural 
elements, 9  ,  10  ,  15  providing a more biomechanically stable envi-
ronment for facilitating fusion in patients. However, patients 
further along the degenerative cascade may not be adequately 
addressed by indirect decompression alone due to osteophyte 
formation. 15  

 Under combined shear and compressive load, the anterior 
shear displacement with an anterior cage alone increased by 
2.2 times over the intact spine ( P   =  0.002). Lateral plate plus 
unilateral PSs and bilateral PSs were the only conditions to 
reduce shear displacement below intact. Bilateral PSs were the 
most rigid fi xation in this direction. All fi xation methods except 
the spinous process plate alone signifi cantly reduced shear dis-
placement with respect to the cage alone ( P   <  0.029). Inter-
estingly, the lateral plate did not improve fl exion-extension 
ROM over the cage alone ( P   =  0.987), however it provided a 
signifi cant reduction in A-P translation ( P   =  0.029). Similarly, 
the lateral plate provided a signifi cant reduction in translation 
when added to the spinous process plate ( P   =  0.001). Also, of 
note was that the spinous process plate provided the greatest 
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 TABLE 2.     P  Values From Statistical Comparisons 
Among Test Conditions  

Test Conditions
Flexion-

Extension
A-P Shear 

Displacement

Intact  vs. 

 Cage alone   < 0.001  0.002 

 Lateral plate   < 0.001 0.960

 Lateral plate  +  unilateral PS   < 0.001 0.950

 Unilateral PS   < 0.001 0.953

 Bilateral PS   < 0.001 0.559

 Spinous process plate   < 0.001  0.043 

 Spinous process  +  lateral plates   < 0.001 0.928

Cage alone  vs. 

 Lateral plate 0.987  0.029 

 Lateral plate  +  unilateral PS   < 0.001   < 0.001 

 Unilateral PS   < 0.001  0.007 

 Bilateral PS   < 0.001   < 0.001 

 Spinous process plate   < 0.001 0.932

 Spinous process  +  lateral plates   < 0.001  0.005 

Lateral plate  vs. 

 Lateral plate  +  unilateral PS   < 0.001 0.560

 Unilateral PS   < 0.001 0.977

 Bilateral PS   < 0.001 0.114

 Spinous process plate   < 0.001 0.331

 Spinous process  +  lateral plates   < 0.001 0.976

Lateral plate  +  unilateral PS  vs. 

 Unilateral PS 0.083 0.860

 Bilateral PS 0.012 0.924

 Spinous process plate   < 0.001  0.004 

 Spinous process  +  lateral plates   < 0.001 0.897

Unilateral PS  vs. 

 Bilateral PS   < 0.001 0.314

 Spinous process plate   < 0.001 0.123

 Spinous process  +  lateral plates   < 0.001 0.899

Bilateral PS  vs. 

 Spinous process plate 0.361   < 0.001 

 Spinous process  +  lateral plates 0.402 0.358

 Spinous process plate  vs. 

 Spinous process  +  lateral plates 0.997  0.100 

 Statistically signifi cant values ( P   <  0.05) are shown in bold-type text. 
 Destabilized condition is excluded from the analysis. 
 A-P indicates anterior-posterior. 
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 Figure 6.    Mean anterior-posterior shear displacement. Error bars repre-
sent  ± 1 standard deviation. Intact denotes intact condition; cage, cage 
alone condition; LPlt, lateral plate; uPS, unilateral pedicle screws; LPlt 
 +  uPS, lateral plate  +  unilateral pedicle screws; bPS, bilateral pedicle 
screws; SPPlt, spinous process plate; SPPlt  +  LPlt, spinous process 
plate  +  lateral plate.  

reduction in fl exion-extension ROM, yet the least reduction 
in A-P shear. The lateral and spinous process plates when not 
applied in combination demonstrated a lack of correlation 
between rotational stability and translational stability. 

 This study and previous studies 24  ,  27  ,  28  simulating DS 
showed signifi cant increases in ROM (hypermobility) that 
potentially overestimates clinical instability. Radiographi-
cal studies demonstrate that some patients with DS in fact 
display normal ROM or hypomobility. 33–37  This may be due 
to restabilization as described in the study by Kirkaldy-Willis 
and Farfan, 38  where degeneration progresses from normal to 
dysfunctional to unstable and then the segment restabilizes. 
Alternatively, hypomobility may be attributed to pain and 
muscle spasms. 37  ,  39  ,  40  In the DS biomechanical studies, the 
facet joint is violated to allow anterior subluxation of L4 with 
respect to L5 as seen clinically. Because the facet joint is an 
important stabilizing structure, this has the effect of increas-
ing ROM, producing results not unlike studies investigat-
ing the iatrogenic instability associated with direct posterior 
decompression including facetectomy, 41  ,  42  or in studies inves-
tigating isthmic spondylolisthesis. 43–45  These ROM results 
may not be applicable to a DS surgical technique that relies 
on indirect decompression, such as a lateral-approach inter-
body fusion, although if additional posterior decompression 
is required, the test results suggest greater instability may be 
present. Because of uncertainty about the clinical implications 
of the ROM data caused by disrupting the facets, we limited 
our analysis to the sagittal plane. A number of studies investi-
gating intraoperative and  in vitro  spinal instability were also 
limited to this plane. 28  ,  46–48  

 Treatment solutions for DS have been effective. 10  ,  49–59  
Weinstein  et al  49  concluded from the Spine Patient Outcomes 
Research Trial study that patients with DS and spinal stenosis 
treated surgically showed substantially greater improvement 
in pain relief and function than patients treated nonsurgi-
cally for 4 years. A review by Martin  et al  50  suggests that a 
fusion is more likely to have a satisfactory result than with 
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  ➢  Key Points   

   This cadaveric study investigated the instability 
associated with DS.  
   There was signifi cant increased instability in 
fl exion-extension ROM found with all types of 
supplemental fi xation with the exception of con-
ditions including the spinous process plate.  
   A-P shear displacement was only reduced below 

intact with bilateral PS and a combination of 
lateral plate and unilateral PS.  
   The increased instability with many fi xation 

options may explain clinical treatment complica-
tions in spondylolisthesis.      
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 This study has limitations that are shared with most other 
cadaveric biomechanics studies. The sample size was limited 
to 7, with specimens of variable bone density and preexist-
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be repeatable between specimens and independent of speci-
men size. Sequence dependence was another limitation. The 
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instability. Consideration should be given to including shear 
loading in biomechanical studies to understand behavior in 
spondylolisthesis applications.             
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